The nucleic acid data:
IRESite Id: 492 Version: 2
Originaly submitted by: Václav Vopálenský
Reviewed by: Martin Mokrejš Last change: 2008-07-15 11:42:51
IRESite record type:
  natural_transcript
The shape of the nucleic acid molecule translated:
  linear
The quality of the mRNA/+RNA sequence:
  our_best_guess
The abbreviated name of the virus/gene coding for this mRNA/+RNA molecule:
  ELG1
The genetic origin of this natural mRNA/+RNA:
  nuclear
The GenBankId GI:# number of the most similar mRNA/+RNA sequence to this one.
34531011 
The mRNA/+RNA description: 
Homo sapiens cDNA FLJ43058 fis, clone BRTHA3007472, highly similar to Homo sapiens ELG protein (HSA277841),
mRNA.
The mRNA/+RNA sequence represented in the +DNA notation:


Credibility of mRNA sequence:
  end-to-end_sequence_reverse_engineered_and_should_match_experiment
The organism containing this mRNA with IRES segment in its genome:
Homo sapiens HEK 293T/17 (ATCC CRL-11268)
A promoter reported in cDNA corresponding to IRES sequence:
  no
The total number of notable open-reading frames (ORFs):
  1
Summary of possible issues when IRES cDNA is experimentally transcribed in vivo:
Summary of experiments studying integrity of the in vivo transcripts in a particular host:
Integrity (uniformity) of mRNA tested using Northern-blot:
not_tested
Integrity (uniformity) of mRNA tested using RNase protection:
not_tested
Integrity (uniformity) of mRNA tested using 5'-RACE:
not_tested
Integrity (uniformity) of mRNA tested using primer extension :
not_tested
Integrity (uniformity) of mRNA tested using RT-PCR:
not_tested
Integrity (uniformity) of mRNA tested using real-time quantitative polymerase chain reaction (rtqPCR):
homogeneous_population_of_molecules_confirmed
Integrity (uniformity) of mRNA tested using RNAi:
not_tested
Integrity (uniformity) of mRNA tested using S1 nuclease mapping:
not_tested
Cryptic promoter presence was confirmed by expression from a promoter-less plasmid:
no_promoter_confirmed
Cryptic promoter presence was confirmed in an experimental setup involving inducible promoter:
not_tested
Integrity (uniformity) of mRNA molecules or possible promoter presence expressed in vivo was tested using another method, please specify in Remarks:
not_tested
The organism used:
Homo sapiens HEK293 (ATCC CRL-1573)
Notable Open-Reading Frames (ORFs; protein coding regions) in the mRNA/+RNA sequence:
ORF
ORF position:   1
Version: 0
Originaly submitted by: Václav Vopálenský Reviewed by: Martin Mokrejš
The abbreviated name of this ORF/gene:
ELG1
The description of the protein encoded in this ORF:
unknown function
The translational frameshift (ribosome slippage) involved:
  0
The ribosome read-through involved:
  no
The alternative forms of this protein occur by the alternative initiation of translation:
  not tested
The ORF absolute position (the base range includes START and STOP codons or their equivalents):
  1558-2580
Remarks:
Tested ELG1 5' UTR sequence contains 35 AUG repeats.
Citations:
Baird S. D., Lewis S. M., Turcotte M., Holcik M. (2007) A search for structurally similar cellular internal ribosome entry sites. Nucleic. Acids. Res. 35(14):4664-4677
IRESs:
IRES:
Version: 0
Originaly submitted by: Václav Vopálenský Reviewed by: Martin Mokrejš
The IRES name:
  ELG1
The IRES absolute position (the range includes START and STOP codons or their equivalents):
  755-1214
Conclusion:
  weakly_supported_IRES
How IRES boundaries were determined:
guessed
The sequence of IRES region aligned to its secondary structure (if available):



There is no Vienna RNA package installed on the server or some error/warning messages were output. Due to that maybe we cannot prepare 2D structures for display. The error/warning message was:
.......((.(..........(((..((..((..((((((((((((..(((....)))..))))))))))))..))..))..))))))...(((((((((((((((((.....(((((........))))).....))))))))))))))))).((((((.((((((((...(((((((((((((((((((((((.(((..((((..((..(....)..))..))))..))))))))))))))))))))))(((((.....)))))...........................................................)))).....))))))))))))))....................................((.....))......................(((..........)))..((.((......................
ERROR: unbalanced brackets in make_pair_table

STDOUT was:

Remarks:
ELG1 IRES represents part (from nt -803 to nt -461 of the original sequence) of 5' UTR from human ELG1 mRNA.
Citations:
Baird S. D., Lewis S. M., Turcotte M., Holcik M. (2007) A search for structurally similar cellular internal ribosome entry sites. Nucleic. Acids. Res. 35(14):4664-4677
IRES trans-acting factor (ITAFS):
IRES trans-acting factor (ITAF):
Version: 0
Originaly submitted by: Václav Vopálenský Reviewed by: Martin Mokrejš
Type of the interaction between ITAF and the RNA subject to translation:
direct_interaction_with_rna
ITAF protein characteristics:
Version: 2 Last change: 2009-08-29 12:19:15
Originaly submitted by: Martin Mokrejš Reviewed by: Martin Mokrejš
ITAF abbreviated name:
La
ITAF fullname:
La autoantigen
ITAF description (long):
La autoantigen (p52), 52 kDa RNA binding protein, predominantly localized to nucleus, unwinds the dsRNA in ATP-dependent manner, forms a dimer
3.1.2. Organisms or in vitro systems where this ITAF was functionally studied:
Organism or in vitro system where ITAF was shown:
Necessity of ITAF for translation in this particular organism or system:
required_but_available_internally
Method used to demonstrate ITAF effect:
in_vitro
In vitro system used to demonstrate ITAF effect:
other
Remarks:
HEK 293T cell extracts were used to demonstrate in vitro binding to ELG1 RNA. Data from Figure 8A.
Citations:
Baird S. D., Lewis S. M., Turcotte M., Holcik M. (2007) A search for structurally similar cellular internal ribosome entry sites. Nucleic. Acids. Res. 35(14):4664-4677
IRES trans-acting factor (ITAF):
Version: 0
Originaly submitted by: Václav Vopálenský Reviewed by: Martin Mokrejš
Type of the interaction between ITAF and the RNA subject to translation:
direct_interaction_with_rna
ITAF protein characteristics:
Version: 1 Last change: 2008-06-27 20:14:51
Originaly submitted by: Martin Mokrejš Reviewed by: Martin Mokrejš
ITAF abbreviated name:
hnRNP_A1
ITAF fullname:
heterogeneous nuclear ribonucleoprotein A1
ITAF description (long):
heterogeneous nuclear ribonucleoprotein A1 (p37), 37 kDa
3.2.2. Organisms or in vitro systems where this ITAF was functionally studied:
Organism or in vitro system where ITAF was shown:
Necessity of ITAF for translation in this particular organism or system:
required_but_available_internally
Method used to demonstrate ITAF effect:
in_vitro
In vitro system used to demonstrate ITAF effect:
other
Remarks:
HEK 293T cell extracts were used to demonstrate in vitro binding to ELG1 RNA. Data from Figure 8A.
Citations:
Baird S. D., Lewis S. M., Turcotte M., Holcik M. (2007) A search for structurally similar cellular internal ribosome entry sites. Nucleic. Acids. Res. 35(14):4664-4677
Regions with experimentally determined secondary structures:
A region with the experimentally determined secondary structure:
IRESite 2D Struct Id: 25
Version: 0
Originaly submitted by: Václav Vopálenský Reviewed by: Martin Mokrejš
The function of the 2D structure:
IRES
The 2D structure causes frameshift:
unknown
The absolute position of the experimentally mapped region (the range includes START and STOP codons or their equivalents):
755-1214
The underlying nucleic acid sequence and structure of the mapped region:



There is no Vienna RNA package installed on the server or some error/warning messages were output. Due to that maybe we cannot prepare 2D structures for display. The error/warning message was:
.......((.(..........(((..((..((..((((((((((((..(((....)))..))))))))))))..))..))..))))))...(((((((((((((((((.....(((((........))))).....))))))))))))))))).((((((.((((((((...(((((((((((((((((((((((.(((..((((..((..(....)..))..))))..))))))))))))))))))))))(((((.....)))))...........................................................)))).....))))))))))))))....................................((.....))......................(((..........)))..((.((......................
ERROR: unbalanced brackets in make_pair_table

STDOUT was:

Remarks:
2D structure of ELG1 from Fig 5A.
4.1.1. Enzymes used to characterize at least partially the 2D structure.
Enzyme or a combination of enzymes used in a single experiment with respective buffer:
ss_experiment_with_enzyme_id: 44
The temperature (in degrees of Celsia):
22
The enzymatic method used to determine the 2D structure:
ribonuclease T1
Enzyme or a combination of enzymes used in a single experiment with respective buffer:
Version: 0
pH
7.00
Li+ [mM]
0
Na+ [mM]
0
K+ [mM]
100.00
Mg2+ [mM]
10.00
Ca2+ [mM]
0
Cl- [mM]
120.00
Tris [mM]
10.00
BSA [mM]
0
HEPES [mM]
0
EGTA [mM]
0
EDTA [mM]
0
cacodylate [mM]
0
Enzyme or a combination of enzymes used in a single experiment with respective buffer:
ss_experiment_with_enzyme_id: 45
The temperature (in degrees of Celsia):
22
The enzymatic method used to determine the 2D structure:
ribonuclease A
Enzyme or a combination of enzymes used in a single experiment with respective buffer:
Version: 0
pH
7.00
Li+ [mM]
0
Na+ [mM]
0
K+ [mM]
100.00
Mg2+ [mM]
10.00
Ca2+ [mM]
0
Cl- [mM]
120.00
Tris [mM]
10.00
BSA [mM]
0
HEPES [mM]
0
EGTA [mM]
0
EDTA [mM]
0
cacodylate [mM]
0
Enzyme or a combination of enzymes used in a single experiment with respective buffer:
ss_experiment_with_enzyme_id: 46
The temperature (in degrees of Celsia):
22
The enzymatic method used to determine the 2D structure:
ribonuclease V1
Enzyme or a combination of enzymes used in a single experiment with respective buffer:
Version: 0
pH
7.00
Li+ [mM]
0
Na+ [mM]
0
K+ [mM]
100.00
Mg2+ [mM]
10.00
Ca2+ [mM]
0
Cl- [mM]
120.00
Tris [mM]
10.00
BSA [mM]
0
HEPES [mM]
0
EGTA [mM]
0
EDTA [mM]
0
cacodylate [mM]
0
Enzyme or a combination of enzymes used in a single experiment with respective buffer:
ss_experiment_with_enzyme_id: 47
The temperature (in degrees of Celsia):
22
The enzymatic method used to determine the 2D structure:
ribonuclease T2
Enzyme or a combination of enzymes used in a single experiment with respective buffer:
Version: 0
pH
7.00
Li+ [mM]
0
Na+ [mM]
0
K+ [mM]
100.00
Mg2+ [mM]
10.00
Ca2+ [mM]
0
Cl- [mM]
120.00
Tris [mM]
10.00
BSA [mM]
0
HEPES [mM]
0
EGTA [mM]
0
EDTA [mM]
0
cacodylate [mM]
0
Citations:
Baird S. D., Lewis S. M., Turcotte M., Holcik M. (2007) A search for structurally similar cellular internal ribosome entry sites. Nucleic. Acids. Res. 35(14):4664-4677
Last change to the database: 2019-03-18 09:32:49 GMT+1